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1.0 SUMMARY

This report describes the work performed on the Phase II
program for Contract Nonr 2840(00) - Annular Nozzle Ejector.

The Phase II program fabricated the full scale e jector as-
sembly and associated equipment. Tests conducted with this hardware

indicated that its augmentation performance was approximately S5 points

les than that of the small scale hardware (;a!mo el " 1.53, ¢full vt ® 1.48).

The jev wake data in combination with jet area distribution indicated the
discrepancy between full scale and small scale results may have been
caused by less effective ejector action due to the non-uniform momentum
curtain. The ejector wake data indicates roughly an order of magnitude
reduction in wake wotal pressure and temperature from the unaugmented
turbgjets:

Ground effect tests were conducted with the small scale model
constructed in Phase I. This model geometrically represents the full
scale hardware. These tests indicated that an augmentation reduction of
approximately 15 points could be anticipated at a ground clearance of 0.35
diameters. The decrease in performance began at approximately 1.3 dia-
meters. Blockage of the secondary flow passages improved performance only
below 0.10 diameters ground clearance. Above that level the best perform-

ance was obtained by permitting secondary pumping to continue..
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SYIMBOL LI

Consisten

AA =

A -
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A L]
J

A -
8

A L]

AR -

C -
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]

ST
t units are used where required and are otherwise noted.

Mixing tube throat area
Mixing tube exit area
Primary jet exit area
Bellmouth exit area

Area

Aspect ratio = (Mean Primargoz:;21:i§t;cumference)

Discharge coefficient

Specific heat at constant pressure at operating temperatures
Measured thrust

Gravitational constant

Pressure

Temperature

Velocity

Measured weight flow

778 ft.1b./BTU

Y = Ratio of specific heat at operating temperature
] =  Augmentation ratio

p = Gas density

As = Entropy change

Subscript

- numerical subscripts see Figure 8

o

t

= Ambient

= Total
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2.0 INTRODUCTION

The Phase I final report presented model test data curves
covering the ejector geometry employed in the full scale ejector with
the exception of the upstream ducting and plenum chamber. This data
for a model which incorporates an extremely high volume, low loss
plenum chamber is reproduced in Figure 1?

The significant ratios of the ejector model which was scaled
up for this program were: a mixing-tube-throat to primary-nozzle-throat

A
area ratio, -A, of 9.74, a mixing tube area ratio, 13, of 1.95, a mix-
A

4
ing~tube-length to throat-diameter ratio of 3, and a primary nozzle
fspect ratio, AR, of approximately 100. To reduce costs, a simple, con-
stant area plenum was designed for use with the full scale ejector assembly.
In order that model test data be available for intelligent comparison with
the full scale data, the model was modified accordingly. Tests of this
modification in the first phase program indicated that an augmentation
ratio penalty of 5-7 points would occur. This is based on supply total
pressure to hodel, not total pressure at the nozzle exit. It is to be

emphasized that for an aircraft installation proper plenum design would

essentially eliminate this penalty.

In Phase I of this program the thrust augmentation was ref-

erred to the measured thrust of the primary’annular nozzle alone corrected

*A plotting error previously published in Reference 1 has been corrected
and the augmentation reference has also been revised as described in the
text.




for secondary flow affects (Reference 1 Appendix). The resulting ref-
erence primary thrust is equivalent to that used by other ejector
investigators. However, its use in this program has resulted in mis-
understandings. Consequently, and henceforth, the thrust augmentation
ratio, @, will be referred to the isentropic thrust which would result
from expanding the measured primary flow rate adiabatically from the
supply total pressure and temperature to ambient pressure. Applying

this augmentation reference to the Phase I work would reduce the

published augmentation ratios approximately 1%.




3.0 DISCUSSION

A v?ry large portion of the Phase II program was expended
in the fabrication of the full scale ejector hardware, thrust table,
test installation and necessary instrumentation. Figure 2 shows the
complete test installation. Figures 3 and 4 show the details of the
ejector primary nozzle and mixing tube, respectively. Appropriate test
stand calibration tests and ejector performance evaluation tests were
conducted.

This phase also included the evaluation of this same
ejector geometry in ground effect using the small scale model fabricated
in the first phase program. The same test installation as used in the
first phase was used in this work (Refer to Reference 1 Appendix). The
linear scale between these two ejectors is approximately 1/9: the thrust
scale is approximately 1/86.

The size of the full scale hardware was such as to require
only 1/3 of the hot gas output of the J3L4-WE-36 turbojet; the remainder

was bypassed vertically to eliminate any extraneous thrust from the

measurements.
3l Full Scale Ejector Program
3.1.1 Instrumentation

The instrumentation used in the full scale program was
designed to provide a comparison with performance obtained in the prev-
ious small scale programs. Factors measured were primary weight flow,

total supply pressure, temperature and thrust. The target accuracy was that




established for standard turbojet acceptance tests: + 1% on thrust
and ¢ 1.5% on airflow rate. Additional instrumentation was used to
define both the primary jet total pressure profile and the ejector as-
sembly wake total pressure and temperature profile.

The necessary pressures were measured with appropriate
indicators: water manometers for low pressures and mercury manometers
for intermediate pressures. The gas temperatures were measured with
chromel-alumel thermocouples; the incicating instruments were a
Rubicon potentiometer and a self-balancing potentiometer. The thrust
was measured on two axes using Hagan "Thrustorq", pneumatic, null
balance, load cells. The output of these units was read on bourdon
tube "precision test gages" and recorded with a multi-channel Foxboro
circular chart recorder.

Figure 5 shows the general arrangement of the load cells
in a schematic plan view. Two load cells, one on either side of the
ejector centerline, were used to measure the thrust of the complete
ejector assembly and/or primary nozzle alone. Figure 6 shows the out-
board load cell from the front and its relation to the ejector hardware.
The use of two load cells to measure ejector thrust results in the
most direct force path. One load cell was used to react the thrust at
right angles to the ejector axis (See Figure 7).

Measurement of the primary flow in this full scale system
presented something of a problem. Since approximately two-thirds of

the jet engine flow was by-passed, it was not possible to calibrate the




engine inlet shroud for flow measurement. Economic considerations pre-
¢luded using sufficient length of straight, unobstructed duct upstream and
downstream of the orifice to meet ASME standards. In addition, the small
difference between the turbojet exhaust total pressure and the required
supply total pressure to the annular ejector assembly precluded the use

of a conventionally sized orifice. The resultiﬁg flow section (Fig. 8)
incorporated a settling length of 3.1 diameters downstream of the bypass
stack, followed by a 1.1 diameters long straightening section. The
length-ciameter ratio of straighteners was 10 (Fig. 9). This, in turn,
was followed by a sharp edged orifice 1 diameter downstream from the
straightener section. The diameter ratio of the orifice was approx-
imately O.8lL, in order to keep pressure losses low. The sharp edge of the
orifice plate was flash chrome-plated to protect it from corrosive effects
of hot exhaust gases.

The static pressures were measured approximately 0.76
diameters upstream of this orifice (Pl) and at approximately 0.3 diameters
downstream (P3). At each location four pressure taps were equally spaced
around the duct. These were manifolded at each location and connected to
the necessary indicating manometers. Downstream from the orifice ap-
proximately 0.75 diameters a total pressure and temperature rake was
installed £o determine the supply conditions at the ejector assembly in-
let, (Fig. 10). It is believed that temperature losses between the flow
measuring orifice, the measurement point, station L4, and the primary

nozzle outlet were insignificant, due to the close coupling of the elements.



301.2 Calibration

3.1.2.1 Flow Section

The flow section utilized in this test does not meet
ASME standards, consequently, rublished orifice coefficient data could
not be used and calibration was required. The calibrating standard was
a 13° half angle, conical nozzle which is shown installed in Figure 11
at the ejector assembly mating flange. The verformance of this type
nozzle is well documented in Reference 2, which defines the discharge
coefficient and velocity coefficient in terms of the pressure and area
ratios.

To accomplish the calibration, tests were made at the
required supply total pressure (Pht)° This was recorded as were the
supply total temperature, (Tht)’ flow orifice (sharp edge) pressure dif-
ferential (AP = P1 - P3), static pressure upstream of flow orifice (Pl)
and conical nozzle exit area. In addition, the thrust produced by the
calibrating conical nozzle was measured. These runs were made for a
series of increasing conical nozzle exit areas in order to define the
dependence of the flow orifice, flow coefficient (E') on jet exit area
and pressure differential. With knowledge of the supply conditions
(P’ht and Tbt)’ and the data of Reference 2, it was possible to determine
the test flow rate (w) and thrust. This flow rate was, in turn, used
to determine the flow coefficient, K'.

The compressible flow rate through & conventional orifice




may be determined from w = n.‘,x V ( -VZp P_ )using published

data for Y = the conventional .,xpansion factor
c

(2]

In this report the flow coefficient is modified to

and K = standard flow coefficient =

1/2

T

(o)
K! YA2K g 2p° F;

and is determined from

Py
Kt =u \ap 2

) calibration runs

The resulting calibration curve permits selection of
the appropriate value of the flow coefficient (K') for reduction of the
ejector performance aata. The resulting spread of the K' values was
less than 1% of K'. It is believed that the ejector primary flow rate
is accurate within a tolerance of %t 1.5%.

The calibration was checked by comparing the measured
thrust of the conical nozzle with that computed by use of the data from
Reference 2. These values of thrust agree within the 1imits of accuracy

of the referred data.

3.1.2.2 Thrust Calibration

The calibrating elements were Dillon dynamometers of

appropriate range which were carefully calibrated on a Tinius Olson




tensile testing machine immediately before use to insure greatest poss-

ible accuracy.

3.1.2.2.1 Engine Axis
The calibrating load was applied directly to the

thrust table as shown in Figure 12 through hs indicating dynamometer
by a turnbuckle secured to a "dead-mar". The applied load and indicated
load (load cell output in psi) were recorded. As expected, the output
was found to be linear with applied load. The least squares technique
was applied to the data to define the calibration constant. I 1is

believed that the resulting engine thrust data is accurate within & 1.0%.

3.1.2.2.2 Ejector Axis

Figure 13 shows the setup for thrust calibration
along this axis. Indicating dynamometers.were installed in both thrust
links for this calibration (not visible in the Figure). The calibrating
load was applied through a third dynamometer and whiffle tree along the
geometrical axis of the ejector assembly by means of a turnbuckle. The
data obtained and the resulting calibration were identical to the prev-
ious case. Separate calibrations were obtained for each of the two load
cells, This permits analysis of differential loading due to misalignment
of the thrust axis and the geometrical axis, and thermal expansion. The
thrust links are sufficiently long to negate cosine effects enduced by

thermal expansion.

3.1.2.3 Over-all Accuracy and Definition of @

The over-all accuracy of the augmentation ratio, @, is & 3%




where @ is defined as follows

lrm
e T
_m as=o
g
and where
V.. Voo 5
V“_o - 2g JCp Tlst 1l- (P—ht)
3.1.3 Results and Evaluation

The prime emphasis of the evaluation tests was to
establish the magnitude of Reynold's number and elevated temperature
effects on the system performance. Toward this end, tests were made of
the primary annular nozzle alone and of the complete annular ejector
assembly (including mixing tube). As in the previous model tests,all
runs were made at a supply pressure of 21" Hg (pressure ratio of ap-
proximately 1.7). The resulting supply temperature was in the 1600-1700°R
range. The prescribed pressure was achieved by operating the turbojet
at approximately 90% rpm and adjusting the bypass as required. For
all runs the equipment was operated for sufficient time to pemit
equilibrium conditions to be established, as indicated by the total temp-
erature at station L (see Figure 8), prior to data recording. The by-
pass feature permitted much greater flexibility in adjustment of the
supply pressure than would ‘have been possible by the conventional throttle

alone.

3.1.3.1 Primary Annular Nozzle

The initial series of five tests with the primary nozzle




resulted in an average uncorrected thrust of approximately 1035 pounds.
This performance in terms of augmentation ratio, @, is 1.01. The model
test results had indicated a comparable primary nozzle performance, #
of 0.99. This variance is believed insignificant, particularly when

it is considered that the accuracy of @ is of the order of & 3%. Dur-
ing these tests, static pressures measured in the eye cf the annulus,
as was done in the model tests, indicated slightly greater bellmouth
flow for the full scale hardware. This fact tends to support the ind-
icated variance in the primary nozzle performance.

The loss in primary nozzle performance due to the
low volume plenum c hamber duplicated results of the model tests. This
Plenum loss amounted to a reduction of approximately 3 points (from a pos-
sible @ of 1.04 to 1.01).

The primary jet exit was traversed at three locations
to determine total pressure profile. These are presented in Figure 1.
The average pressure loss indicated by these profiles was approximately
9% (approximately L% on a thrust augmentation basis). While the var-
iation from point -to point is not appreciable, the total effect com-
bined with the area distribution could adversely affect the over-all
ejector performance,

In the fabrication of the primary nozzle it was ex-
tremely difficult to maintain the concentri city of the inner and outer
shells forming the annular nozzle throat. Consequently, the area dis-
tribution was non-uniform., In order to reduce the variation below that

which existed in the "as spun" and "as assembled" condition, 2L spacers

10




were incorpcrated to "equalize" this annular throat as much as possible.
It will be noted from the throat dimensions given in Figure 1 that this

was not completely successful.

3.1.3.2 Complete Bjector Assembly

Immediately following the evaluation of the primary
nozzle, a series of three tests of the complete ejector produced an
average uncorrected thrust of 1452 pounds. This performance in terms
of augmentation ratio, @, is 1.4l or five points lower than the model
test results. The model tests had indicated an augmentation ratio of
1.46 could be achieved with an ejector assembly incorporating the plenum
design used in this full scale hardware. Proper plenum design could
increase this full scale augmentation performance approximately 7 points
to 1.48. This point has been located in Figure 1. It is believed that
the loss in performance between the small scale work and the full scale
work can be attributed, at least partially, to the non-uniformity of
the area distribution discussed in paragraph 3.1.3.1.

The work of Reference 3 points out that scale
(Reynold's number ) effects are negligible and that the effects of an
elevated temperature primary gas are self compensating. The increased
temperature at the same supply pressure produces a higher velocity prim-
ary Jet which decre;ses the basic mixing efficiency. In contrast, the
increased viscosity of the elevated temperature primary Jjet improves the
mixing process. The net effect of temperature is seen to be negligible.

The subsequent test program to substantiate this

performance and to determine means of improving it was characterized by

11




erratic and deteriorating performance. Recalibration of the instrument-
ation did not reveal the source of difficulty.

Prior to dismantling the assembly for internal inspec-
tion the wake was traversed one exit diameter downstream of the mixing
tube to determine the wake total pressure and temperature profiles.

This data is presented in Figure 165.

Immediately following this test the mixing tube was
removed and spot checks of the primary wake total pressure were made.
These checks revealed that the average jet pressure loss had increased
to approximately 23%, i.e., the effective total pressure for correla-
tion of this exit wake profile data was approximately 17 inches of mercury.
It was also noted that the primary performance had deteriorated. This
same information pointed out the probable cause of the inferior per-
formance.

Referring again to the wake profiles in Figure 15,
it is seen that an appreciable reduction is achieved in the basic jet
temperature and pressure. The peak exit pressure is seen to be 17.5
inches of water or approximately 15 fold reduction; the peak temperature
i1s 200°F (660°R), or a L fold reduction from the approximate 1620°R jet

exit temperature.

3.1.3.3 Primary Annular Nozzle Damage

Inspection of the interior of the duct system, start-
ing with the straightener section revealed no cause for the increase
in pressure loss or for erratic performance. Inspection of the primary

nozzle inlet revealed that the divider plate (-35 in Figure 3) had been

12




severely damaged, apparently by thermal fatigue in combination with
differential expansion between the duct outer walls and the divider
plate. Figure 16 shows the damage to the divider plate which was origin-
ally installed to improve the diffusion into the plenum chamber. The
right hand photo in Figure 16 shows that a large "tab" (approximately

S x 7 inches) was torn from the divider prior to this complete fail-
ure. Markings on the inner wall of the duct indicate that this "tab"
had flexed up énd down several times, which probébly caused thg erratic,
poof performance. The complete failure of the divider plate reduced

the duct area approximately 80 percent. This undoubtedly was the cause
of the high indicated plenum loss. Complete repair of this damage was
not possible prior to the end of this phase of the program. This work

will be continued into the subsequent phase.

3.2 Small Scale Annular Nozzle Ejector Ground Effect Evaluation

Ejector performance tests were conducted in ground effect,
using the small scale hardware which was fabricated in Phase I. This
hardware represents the full scale configuration. It should be em-
phasized that this original configuration was optimumized for out-of-
ground effect operation and does not necessarily represent an optirmmm
ground effect configuration. The data is presented in Figure 17 as aug-
mentation ratio versus dimensionless ground clearancé. It will be noted
that there is a gradual deterioration in performance as the ground clear-
ance is decreased below approximately 1.3 diameters. This deterioration
continues to approximately O.4 diameters ground clearance at which point

the augmentation ratio is approximately 1.3. Further reduction of

13




ground clearance improves @J. In fact, at ground clearances less than
0.15 diameters, @ is greater than that out-of-ground effect. The reason
for this performance is hypothesized as follows: the ground plane be-
came an influe;;e in the cycle by increasing the static pressure at the
mixing tube exit plane. At first, this pressure was only sufficient to
cause a reduction in the secondary mass flow handled and not sufficient
to cause a net gain in performance due to its reaction on the downward
facing projected area of the diffusing mixing tube. By continuing to
decrease the ground clearance, the exit static pressure increased to the
point where a depression no longer existed at the eye and consequently,
bellmouth pumping was stopped. This occurred at approximately 0.15
diameters ground clearance. The exit static pressure acting on down-
ward facing projected area of the mixing tube at this ground clearance
was sufficient to improve performance. It was found that the mixing tube
inlet continued to pump to approximately 0.08 to 0.12 diameters grourd
clearance.

It will be noted that only below O.1 diameters ground clear-
ance was any benefit derived from complete blockage of either of the
secondary flow paths, the bellmouth or mixing tube inlet.

The problems encountered with the full scale hardware pre-

cluded further expenditure of effort in the ground-effect regime.

)1




L.0 CONCLUSIONS
k.1 The effect of the ejector size (Reynolds' number) on

ejector performance is negligible.

k.2 The effect of elevated temperature on ejector performance

is negligible.

k.3 The maldistribution of jet area and jet total pressure is

probably largely responsible for the variation between small and full

scale ejector performance.

L.k A performance penalty can be expected with the present
ejector configuration when operating at ground clearance from 1.3 to

0.15 dismeters. Below 0.15 diameters superior performance is achieved.

L.5 Roughly an order of magnitude reduction of the wake
temperature and total pressure is achieved by the use of the ejector

system over a straight turbojet exhaust.

15




5.0

1.

2.

REFERENCES

Spiegelberg, C. H.: "Summary Report - Annular Nozzle
Ejector" - Contract Nonr 28L0(00), Hiller Aircraft
Corp., Advanced Research Division Report No. 243,

November 1959.

Grey, Ralph E., Jr., and Wilsted, H. Dean: "Performance
of Conical Jet Nozzles in Terms of Flow and Velocity

Coefficients", NACA Report No. §33.

Bertin, J., and Le Nabour, M.: "Contribution Au
Développement Des Trompes et Ejecteurs", De La Sociéte
Bertin and Cie, Technique et Science Aeronautiques,
Tome 3, 1959.

16




15

|
|

guration

|
|
|

]

Full Scale Performanc

|
|
|
| |
el Performance of Full Scale Confi
| i
il | 4!

0

1

NOZZLE ASPECT RATIO = 99,95

|
I
FIGURE 1

PHASE I MODEL TEST RESULTS

Iulfllln.m. e e e ———————
=
......... o - —: E B
T 5 | Sek : .
e = : <}

1.6
1.5

1.1

-3 ™ e
- ~ ~

@ “OILVM NOLLVINZWOOV

EFFECT OF AREA RATIO ON AUGMENTATION PERFORMANCE AT CONSTANT L/D RATIOS
FOR DIFFUSING MIXING TUBES




€[ QNV X16WESSY ¥0LOArd SLTIJNOD 32 JUNOId

NOILVTIVISNI ISEL ENIONZ IE[OdUNL n




15°
EEMINOL

—(’ = o -

) wansvon / PPN | ]
BT WE LD AL SPRLCES & E ==
SkunE LoLATI{N 08 TiouAL - \J = ->1
TeE seLTim GG == \ =i

To e 128 2170 0w
LT TS ARA SuasT a3 AfRA -

/




20 pamr oo

WY 1o 9-6 7 oS }LM .00 O.C.

:"”f K A"u"‘t.yu.. wane
- e [ fn) ANGLE
T Bsw eavwi e 06
W
2oo 0
Lo “_h “['_ -
% =
i 4 - -
> )| &
sum womt 7
-3 L 7‘" x-a Aw\C
/ 0 Al 48°
/ RowL ICAM WELD 08 SPOTWELD @O OC.
.‘{ LD .= LOWATE To SBO4 36 AL W K Madn
i BSOS LAk .. 28
mlﬂ whip Of 30T wiid
@0 O.C. 2EOWE AS DHOWM 4,

. VIEW [x\ -

€ s — = = — = »

A ST seces e | \ o
NG TUORE . AD LuOuwlh 3
et :
BUTY wihil Jtwr L -4
PRout Quse 10 o O3 nesdl [ R |
- LM BLude 10 o Cie TS E .0
: ! D -
’ k + /,r-“'
~ o o
E - section (5 ° 75 |
T \ TIPUAL R -3,-9,-1,-3 | 3
-9 ._

e \
/ @t‘::uuu

e | ol /
—— I?t. /,!w SJ:\: J -
i SECTION Yo

20097 VIEW

e — =

o sace AATE
SLOT fed BANL LELWP [ FTIoNAL
S\OT W™ Ay biax

__.1
s AT 1" !

aant \

secTion 3 = [y




- ~
n :
\
\ |
2
J%t \ i (ERP)
\
! ‘ \
¢ I
1@
°00 .= VIEW

(4524

4128
r ia
=
- B - ‘
1
]( z‘u. On
’ e — 2T 308
K ﬁ_‘ / DA -3
N ¥ .
. . 2586 T =
MWOE
l Dia -3
e =
|
I — o :
. /: -
/
-
=
o .
ECTION o ¥l
+
1 Al LISTIG LGRS ARD THRAT PLARS TO e I’ 0w nents
B sormi s uite muas FUNS WD ARDNS LEG BF ML
- el V13 Mean 4t essL OF aes
A omgmma TO MmaTak. CALT with GMTWUAS AUEON WELD (N BOT 31K OF SOWT
4 DI SRARTEANT WPKT ALL Ausieu welDS
-8 Aer ves maep sicnan as eas
D) AAB g semtr e A tHR0 - € BTN GG
1 ™e Avsdemny JET Rwerun Taw TEMR PATVEL Awp Pty
Tod S APPRDROWLY (200" F AvD 10 PRiGn TADRICATING TRUMIGUSS MULT Al
COMMITRNT W, ARG ALL ComtPloiTion MUY 08 seediveR TromT R, T3 Cond Mo
NOTES -UMESS OTHERWISE SPECIFED
-

g
e eh s ne

e

»

»
PRC SN

»

0 et iy -4

D vez.me

T T
| -aed

3 --

o a2

t -

I. -9

' -

r -

] -

t -

' -

[ %

1 i)

'

1

]

L}

|

1

)

t

1

'

. baew
T
.

B -1V
IAFR

[V W

AN €
cuoveea

STl

b A0
Cve

AN Y Tian
rovaa
Ly

o -

T e
TS

ek
e

' et IS

R

.

VO~ Jatan
k]

Lot Gy, CAL

IWMULL, T, g

s T T { ;
we | |
s

o
oS

(1]

s

9

G 3




ITERESSV 0L ONIXTW $1 FUNOId

10T I o 52 T uSE
iN-w..n..l

4 I O

o e — a3 weuwres 77 L TMyn ooe
3 - * I4cES -
o~/ Zy B O iy ol
o - IF P LT awS -
L [ e e wy Dp—

nv
zol =




uﬁﬂu

118D

SNOILVDOT TTdD @VOT JO MAIA NVIJd OILVWIHOS S FUODIL




FIGURE 6:

EJECTOR AXIS LOAD CELL INSTALLATION (FRONT VIEW)
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FIGURE 9: FLOW STRAIGHTENER
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FIGURE 13: EJECTOR AXIS LOAD CELL CALIBRATION SET-UP
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